Instructor: Dr. Andrew Richards
Office: Cockins Hall 325
Office Hours: MWF 1:15-2:15 and by appointment
E-mail: richards.1227@osu.edu not buckeyemail

Course meeting times and locations: Lecture: MWF 3:00-3:55pm in Ramseyer 059; Recitation W
4:10-5:05 or R 4:10-5:05 in Cockins 218.

Prereq: C- or better in Math 2153, 2162.xx, 2182H, or 4182H, or permission of instructor. Not open to
students with credit for 3201, 4202, 6201, 6301, 6801, Math 4530 or 5530H.

Required Text: John E. Freund’s Mathematical Statistics with Applications, 8th edition, by Irwin Miller
and Marylees Miler, Pearson, 2014

The textbook for this course is being provided via CarmenBooks. Through CarmenBooks, students obtain
publisher materials electronically through CarmenCanvas. The fee for this material is included as part
of tuition and is listed as CarmenBooks fee on your Statement of Account. Materials provided through
CarmenBooks are available immediately on or before the first day of class.

Unless you choose to opt-out of the program, you do NOT need to purchase any materials for this
course at the bookstore. For more information on the program or information on how to opt out, please
visit the CarmenBooks website.

Access this eBook through the CarmenBooks reader link in the course navigation.

Website: Please visit http://www.carmen.osu.edu/ Carmen is used extensively for this course, so you
should check daily for announcements about the class and other class material. Contact the IT Service
Desk at 614-688-4357 (HELP) for help with access.

Course Description: This is the first course in a two-semester sequence on probability and mathematical
statistics. The focus of STAT 4201 will be on introducing some of the basic concepts in probability theory.
Topics to be covered include basic counting, set theoretic notation, the axioms of probability spaces, dis-
crete and continuous distributions and densities, random variables, expectation and moments, functions
of random variables and transformation techniques, common sampling distributions, and order statistics.
These topics are covered in the first 8 chapters of the required textbook.

Learning Outcomes: By the end of this course, students should successfully be able to:

- Understand the basic concepts in probability and statistics.
- Compute probabilities and statistics of discrete and continuous distributions.
- Comprehend the probabilistic methods needed to analyze and critically evaluate statistical models
 and arguments.
- Recognize the importance of statistical ideas.
Homework:
Description: There will be ten homework assignments. They will consist of mostly textbook problems, with some additional problems motivated by real-world applications. Homework must be uploaded to Carmen by the due date. The solutions may be handwritten and scanned, entered directly into a tablet, or typed. All work and software output must be uploaded as a single pdf file.

Academic integrity and collaboration: The purpose of the written homework is to assess and provide feedback on your understanding of and ability to explain the reasoning behind complex derivations or probabilistic arguments. Therefore, answers with little or no explanation or work shown will receive no credit. For the homeworks as well the exams, your solution should be clear and detailed to explain your understanding of the course.

While grading the homeworks, it may not be possible for us to provide detailed explanations on each question that is graded. To make up for this, I will endeavor to create homework solutions that are detailed enough to allow you to understand how the question could be approached. You may consult with other students, however, the work submitted must be your own.

Recitation lab activities:
Description: Weekly lab activities will be completed in recitation. These are designed so you can work on difficult problems together and under the guidance of your TA. These problems will be designed to run the range from simpler problems for gaining experience to challenging problems that may exceed the difficulty of exam questions.

Academic integrity and collaboration: You are encouraged to work together with your fellow students and seek help from your TA.

Exams:
Description: There will be three midterm exams and one final exam. The midterms will be held during lecture on the dates listed in the schedule.

Academic integrity and collaboration: You must complete the midterm and final exams yourself, without any external help or communication. Again, answers with little or no explanation or work shown will receive no credit. Students are strongly advised to prep a formula highlight sheet in advance.

Late assignments policy:
Assignment solutions will be posted shortly after submission. No late assignments will be accepted without prior permission and/or formal documentation. Please refer to Carmen for due dates. Accommodations can be made in case of severe illness, so please notify me as soon as possible if this situation arises. Deadlines are crucial in order, among other things, to:

- Get grading done and provide feedback in a timely manner
- Grade all assignments at the same time to maintain consistency and fairness
- Provide a mechanism to help ensure students keep up with the material and are prepared for follow-on lectures
- Protect students from their inability to predict their own future behavior – “I’ll somehow manage to catch up at the end of the semester.”

Course attendance policy: You are expected to attend all lectures. Formal attendance records will not be kept, and students are responsible for all material covered in class. I intend to simulcast lectures
on zoom and record them, however, I am not responsible for the quality of these recordings and all students are recommended to attend in person. Exams must, of course, be taken in person. Office hours should not be used for instruction on material that has already been covered in class.

Course technology: Students are expected to have a basic working knowledge of The Microsoft Office software. All Ohio State students are now eligible for free Microsoft Office 365. Visit the go.osu.edu/office365help help article for full instructions.

Final Grade: Your final course grade will be based on the following weighting of assessment components:

<table>
<thead>
<tr>
<th>Category</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>15</td>
</tr>
<tr>
<td>Lab</td>
<td>15</td>
</tr>
<tr>
<td>Exam 1</td>
<td>15</td>
</tr>
<tr>
<td>Exam 2</td>
<td>15</td>
</tr>
<tr>
<td>Exam 3</td>
<td>15</td>
</tr>
<tr>
<td>Final exam</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Grading Scale:
Grades will be assigned according to the scale below, with course components weighted as listed above.

93-100 = A
90-92.9999 = A-
87-89.9999 = B+
83-86.9999 = B
80-82.9999 = B-
77-79.9999 = C+
73-76.9999 = C
70-72.9999 = C-
67-69.9999 = D+
60-66.9999 = D
< 60 = E

E-mail Correspondence: In order to protect your privacy, all course email correspondence must be done through a valid OSU name.nn account. Please use the correct email address. (Richards.1227@osu.edu not @buckeyemail.osu.edu). Please write “STAT 4201” somewhere in the subject line, as this will help me to quickly identify and reply to class emails. It is reasonable to expect a response within one business day.

Academic Misconduct: It is the responsibility of the Committee on Academic Misconduct to investigate or establish procedures for the investigation of all reported cases of student academic misconduct. The term “academic misconduct” includes all forms of student academic misconduct wherever committed; illustrated by, but not limited to, cases of plagiarism and dishonest practices in connection with examinations. Instructors shall report all instances of alleged academic misconduct to the committee (Faculty Rule 3335-5-487). For additional information, see the Code of Student Conduct http://studentlife.osu.edu/csc/.

Special Accommodations: The University strives to make all learning experiences as accessible as possible. In light of the current pandemic, students seeking to request COVID-related accommodations may do so through the university’s request process, managed by Student Life Disability Services. If you anticipate
or experience academic barriers based on your disability (including mental health, chronic or temporary medical conditions), please let me know immediately so that we can privately discuss options. To establish reasonable accommodations, I may request that you register with Student Life Disability Services. After registration, make arrangements with me as soon as possible to discuss your accommodations so that they may be implemented in a timely fashion. SLDS contact information: slds@osu.edu; 614-292-3307; slds.osu.edu 098 Baker Hall, 113 W. 12th Avenue.

Other information: Other standard university policy statements can be found here: https://asccas.osu.edu/curriculum/syllabus-elements.

Copyright: The materials used in connection with this course may be subject to copyright protection and are only for the use of students officially enrolled in the course for the educational purposes associated with the course. Copyright law must be considered before copying, retaining, or disseminating materials outside of the course.

Disclaimer: The planned instruction for this course may be disrupted for a number of reasons. Such disruptions may affect individual students for a brief period of time, the entire class, the instructor, or the entire university. If the class is disrupted, we will adjust as needed. The adjustments may include changes to course delivery, assignments, grading of assignments, and determination of final course grade. Please pay special attention to announcements in class and over Carmen. Failure to address every possible scenario in this syllabus does not override your responsibility to exercise basic common sense. If in doubt about any course policy, ask in advance!

Acknowledgement: Thank you to Dr. David Sivakoff for his kind sharing of advice and course materials in preparation for this semester.
Tentative Course Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topics, (Chapters), Holiday, Homework, and Exam Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/9-1/13</td>
<td>Intro, combinatorics, basic probability (1-2)</td>
</tr>
<tr>
<td>2</td>
<td>1/16-1/20</td>
<td>Conditional probability and Bayes Theorem (2) MLK Day 1/16 HW1 1/20</td>
</tr>
<tr>
<td>3</td>
<td>1/23-1/27</td>
<td>Random variables, CDFs (3.1-3.4) HW2 1/27</td>
</tr>
<tr>
<td>4</td>
<td>1/30-2/3</td>
<td>Joint and conditional distributions (3.5-3.7) HW3 2/3</td>
</tr>
<tr>
<td>5</td>
<td>2/6-2/10</td>
<td>Expected value (4.1-4.3) MT1 2/6</td>
</tr>
<tr>
<td>6</td>
<td>2/13-2/17</td>
<td>Moments, MGFs, covariance (4.4-4.7) HW4 2/15</td>
</tr>
<tr>
<td>7</td>
<td>2/20-2/24</td>
<td>Conditional expectation, discrete distributions (4.8-5.2) HW5 2/22 MT2 2/24</td>
</tr>
<tr>
<td>8</td>
<td>2/27-3/3</td>
<td>Binomial, hypergeometric, geometric distributions (5.2-5.8)</td>
</tr>
<tr>
<td>9</td>
<td>3/6-3/10</td>
<td>Poisson, continuous distributions (5.9-6.5) HW6 3/8</td>
</tr>
<tr>
<td>10</td>
<td>3/13-3/17</td>
<td>SPRING BREAK</td>
</tr>
<tr>
<td>11</td>
<td>3/20-3/24</td>
<td>Normal distribution (6.6-6.7)</td>
</tr>
<tr>
<td>13</td>
<td>4/3-4/7</td>
<td>Transformations, sampling distributions (7.3-8.2)</td>
</tr>
<tr>
<td>14</td>
<td>4/10-4/14</td>
<td>CLT, finite population sampling, χ^2 distribution (8.3-8.5) HW8 4/10</td>
</tr>
<tr>
<td>15</td>
<td>4/17-4/21</td>
<td>T and F distributions, order statistics (8.6-8.7) HW9 4/17</td>
</tr>
<tr>
<td>16</td>
<td>4/24</td>
<td>Review HW10 4/24</td>
</tr>
</tbody>
</table>

FINAL EXAM: Friday, April 28, 4:00-5:45pm in our regular classroom.