Course overview

Instructor
Instructor: Dr. Sebastian Kurtek
Email address: kurtek.1@stat.osu.edu
Phone number: 614-292-0463 (contact via e-mail is highly preferred)
Office hours: Mondays 4PM-5PM
Office location: Cockins Hall 440B
Graduate teaching associate: Ms. Meijia Shao
GTA email address: shao.390@osu.edu
GTA office hour: Thursdays 1PM-2PM on Zoom (link provided on Carmen webpage)

Course description
STAT 7730 is a graduate level course in modern statistical computing methods. This course is not about the use of pre-packaged statistical software. The main goal of this course is to gain an understanding of advanced techniques and ideas used in implementing mathematical/statistical formulations on computers, with a focus on common statistical approaches. Students will be expected to implement the methods we cover in class by programming in a language of their choice (preferably R, although Matlab is acceptable). I will provide example R code that goes along with the material covered in class. Students are expected to be able to analyze the code, and apply the basic structure of the code to new problems assigned as homework.

Note: Students who have had no prior programming experience should expect to spend extra time outside of class reviewing the example code and familiarizing themselves with a statistical programming environment.
The main topics covered in this course will include:

(1) **Linear Methods for Regression Analysis/Matrix Decomposition**: basic numerical analysis, multiple regression analysis, orthogonalization by Householder transformation, singular value decomposition, QR decomposition, principal component analysis, linear discriminant analysis - 2 weeks

(2) **Numerical Methods for Maximum Likelihood Estimation**: univariate/multivariate numerical optimization, maximum likelihood estimation, expectation-maximization (EM) algorithm and extensions - 3 weeks

(3) **Random Number and Variable Generation**: uniform random number generators, modular arithmetic, combination generators, discrete and continuous random variables, inverse transform method, acceptance-rejection method, tilted sampling - 2 weeks

(4) **Monte Carlo Integration**: general formulation, importance sampling, variance reduction, numerical integration and differentiation - 2 weeks

(5) **Markov Chain Monte Carlo (MCMC) Methods**: properties of Markov chains, Metropolis-Hastings algorithm, Gibbs sampler, extensions - 2 weeks

(6) **Bootstrap**: plug-in estimator, non-parametric/parametric bootstrap, bootstrap estimate of standard error, confidence intervals based on bootstrap - 1 week

(7) **Additional Topics** - time permitting

Course learning outcomes

By the end of this course, students should:

- Be familiar with common computational statistics methods, e.g., optimization, random variable generation, Markov chain Monte Carlo, and their practical limitations;
- Be able to implement algorithms associated with the methods and apply them on real data;
- Be able to interpret output from computational algorithms;
- Improve their statistical programming skills.

Prerequisites

STAT 6802 and STAT 6950 or permission of instructor. Additionally, working knowledge of linear algebra, advanced calculus, and some programming background is helpful.

Course materials

The primary resources will be notes and additional references assigned for reading by the instructor.
Helpful Textbooks
- Givens and Hoeting, Computational Statistics
- Robert and Casella, Monte Carlo Statistical Methods
- Efron and Tibshirani, An Introduction to the Bootstrap
- Monahan, Numerical Methods of Statistics
- Rizzo, Statistical Computing with R

Course technology
For help with your password, university e-mail, Carmen, or any other technology issues, questions, or requests, contact the OSU IT Service Desk. Standard support hours are available at https://ocio.osu.edu/help/hours, and support for urgent issues is available 24x7.
- Self-Service and Chat support: http://ocio.osu.edu/selfservice
- Phone: 614-688-HELP (4357)
- Email: 8help@osu.edu
- TDD: 614-688-8743

Baseline technical skills necessary for this course
- Basic computer and web-browsing skills
- Navigating Carmen
- CarmenZoom

Necessary equipment
- Computer: current Mac (OS X) or PC (Windows 10+) with high-speed internet connection

Necessary software
Students are expected to have basic familiarity with a scientific computing environment such as R, S-PLUS or Matlab. We will use the R language and environment for statistical computing and graphics as an aid to learning about statistical computing methods. R is available for free at http://www.r-project.org. I will provide example R code in class. Students are highly encouraged to use R; check with the instructor to see if use of another language/environment is acceptable. Some students in the past have successfully completed the course using Matlab.

Course delivery
- This class will take place in-person three times per week on Mondays, Wednesday and Fridays, 11:30PM-12:25PM in Cockins Hall 218.
• All assignments will be posted on the Carmen class website. You will be given ample time to complete the assignments. Assignment due dates will be announced in class and on the Carmen course webpage.
• I will hold weekly office hours in Cockins Hall 440B.

Grading and faculty response

Grades

<table>
<thead>
<tr>
<th>Assignment or category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>30</td>
</tr>
<tr>
<td>Discussion</td>
<td>10</td>
</tr>
<tr>
<td>Midterm Project</td>
<td>30</td>
</tr>
<tr>
<td>Final Project</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

All course grades will be recorded on the class website (Carmen).

Assignment information

Homework
Homework will generally be assigned approximately once every two weeks. The assignments will require the derivation of analytical results as well as the implementation of the computational methods we discuss in class. Please write clear and detailed answers to the homework problems and provide a statement interpreting the obtained results. If a problem involves writing a program, submit a printout of the code with the solution. It is important to provide illustrative outputs of your programs to accompany the homework solutions. For instance, all graphs should be labeled and placed close to the associated written part. Points are allocated to both the correctness of the solution and the level of presentation.

Discussion
I will post regular discussion topics related to the content we are learning on Carmen. All students in the course are required to participate in the discussion.
Midterm and Final Projects
Details of project assignments will be given later in the course.

Late assignments
Generally, late assignments will not be accepted. However, if there are extenuating circumstances beyond your control, please contact the course instructor immediately.

Grading scale
93–100: A
90–92.9: A-
87–89.9: B+
83–86.9: B
80–82.9: B-
77–79.9: C+
73–76.9: C
70 –72.9: C-
67 –69.9: D+
60 –66.9: D
Below 60: E

Faculty feedback and response time
I am providing the following list to give you an idea of my intended availability throughout the course. (Remember that you can call 614-688-HELP at any time if you have a technical problem.)

Grading and feedback
For homework, you can generally expect feedback within 7-14 days.

E-mail
I will reply to e-mails within 24 hours on school days.

Attendance and participation

Student participation requirements
Your participation is based on your in-person attendance. The following is a summary of everyone's expected participation:
• **Logging in:** **AT LEAST ONCE PER WEEK**
 Be sure you are logging in to the course in Carmen each week, including weeks with holidays. (During most weeks you will probably log in many times.) If you have a situation that might cause you to miss an entire week of class, discuss it with me as soon as possible.

• **In-person class meetings:** **REQUIRED**
 You are required to attend all in-person lectures and you are responsible for all material presented during these lectures. However, formal attendance will not be taken during the class.

• **Office hours:** **OPTIONAL**
 My office hours will be held in-person in my office in Cockins Hall 440B. If you are required to discuss an assignment with me, please contact me at the beginning of the week if you need a time outside of my scheduled office hours.

Communication guidelines

The following are my expectations for how we should communicate as a class. Above all, please remember to be respectful and thoughtful.

• **Tone and civility:** Let's maintain a supportive learning community where everyone feels safe and where people can disagree amicably. Remember that sarcasm doesn't always come across online.

• **Citing your sources:** When we have academic discussions, please cite your sources to back up what you say. (For the textbook or other course materials, list at least the title and page numbers. For online sources, include a link.)

Other course policies

Health and safety

The Ohio State University Wexner Medical Center's Coronavirus Outbreak site (https://wexnermedical.osu.edu/features/coronavirus) includes the latest information about COVID-19 as well as guidance for students, faculty and staff. Guidelines and requirements for campus safety from the University’s COVID-19 Transition Task Force can be found on the Safe and Healthy website (https://safeandhealthy.osu.edu).

Potential disruptions to instruction

• As much as is possible, students will have access to material online if they are unable to attend class because of positive diagnosis, symptoms, or quarantine required following contact tracing.
• If the instructor is unable to be present in person because of positive diagnosis, symptoms, or quarantine following contact tracing, the course will temporarily shift to online instruction. Details will be given on the course website if this arises.

Student academic services

Student academic services offered on the OSU main campus http://advising.osu.edu/welcome.shtml.

Student support services

Student support services offered on the OSU main campus http://ssc.osu.edu.

Academic integrity policy

Policies for this hybrid course

- **Homework and project assignments**: You are expected to produce original and independent work for homework and project assignments. Although students are often encouraged to work together on homework assignments, all students must submit their own written work *in their own words*. Note that allowing others to copy your work is considered academic misconduct. Academic misconduct will not be tolerated and will be dealt with procedurally in accordance with University Rule 3335-31-02. (This policy can be found at [http://oaa.osu.edu/coam.html](http://oaa.osu.edu/coam.html.).)

- **Reusing past work**: In general, you are prohibited in university courses from turning in work from a past class to your current class, even if you modify it. If you want to build on past research or revisit a topic you’ve explored in previous courses, please discuss the situation with me.

- **Falsifying research or results**: All research you will conduct in this course is intended to be a learning experience; you should never feel tempted to make your results or your library research look more successful than it was.

- **Collaboration and informal peer-review**: The course includes many opportunities for formal collaboration with your classmates. While study groups and peer-review of major written projects is encouraged, remember that comparing answers on an assignment is not permitted. If you’re unsure about a particular situation, please feel free just to ask ahead of time.
Ohio State’s academic integrity policy

It is the responsibility of the Committee on Academic Misconduct to investigate or establish procedures for the investigation of all reported cases of student academic misconduct. The term “academic misconduct” includes all forms of student academic misconduct wherever committed; illustrated by, but not limited to, cases of plagiarism and dishonest practices in connection with examinations. Instructors shall report all instances of alleged academic misconduct to the committee (Faculty Rule 3335-5-487). For additional information, see the Code of Student Conduct http://studentlife.osu.edu/csc/.

Copyright disclaimer

The materials used in connection with this course may be subject to copyright protection and are only for the use of students officially enrolled in the course for the educational purposes associated with the course. Copyright law must be considered before copying, retaining, or disseminating materials outside of the course.

Statement on title IX (Recommended)

Title IX makes it clear that violence and harassment based on sex and gender are Civil Rights offenses subject to the same kinds of accountability and the same kinds of support applied to offenses against other protected categories (e.g., race). If you or someone you know has been sexually harassed or assaulted, you may find the appropriate resources at http://titleix.osu.edu or by contacting the Ohio State Title IX Coordinator, Kellie Brennan, at titleix@osu.edu

Accessibility accommodations for students with disabilities

The university strives to make all learning experiences as accessible as possible. In light of the current pandemic, students seeking to request COVID-related accommodations may do so through the university’s request process, managed by Student Life Disability Services. If you anticipate or experience academic barriers based on your disability (including mental health, chronic, or temporary medical conditions), please let me know immediately so that we can privately discuss options. To establish reasonable accommodations, I may request that you register with Student Life Disability Services. After registration, make arrangements with me as soon as possible to discuss your accommodations so that they may be implemented in a timely
fashion. SLDS contact information: slds@osu.edu; 614-292-3307; http://slds.osu.edu; 098 Baker Hall, 113 W. 12th Avenue.

Accessibility of course technology
This course requires use of Carmen (Ohio State's learning management system). If you need additional services to use these technologies, please request accommodations with your instructor.

Your mental health
As a student you may experience a range of issues that can cause barriers to learning, such as strained relationships, increased anxiety, alcohol/drug problems, feeling down, difficulty concentrating and/or lack of motivation. These mental health concerns or stressful events may lead to diminished academic performance or reduce a student’s ability to participate in daily activities. The Ohio State University offers services to assist you with addressing these and other concerns you may be experiencing. If you or someone you know are suffering from any of the aforementioned conditions, you can learn more about the broad range of confidential mental health services available on campus via the Office of Student Life’s Counseling and Consultation Service (CCS) by visiting ccs.osu.edu or calling 614-292-5766. CCS is located on the 4th Floor of the Younkin Success Center and 10th Floor of Lincoln Tower. You can reach an on call counselor when CCS is closed at 614-292-5766 and 24 hour emergency help is also available through the 24/7 National Suicide Prevention Hotline at 1-800-273- TALK or at suicidepreventionlifeline.org

Disclaimer
This syllabus should be taken as a fairly reliable guide for the course content. However, you cannot claim any rights from it and in particular we reserve the right to change due dates or the methods of grading and/or assessment if necessary. Any changes will be communicated to you through official course announcements.