Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Seminar: Crystal Linkletter

Statistics Seminar
April 29, 2010
All Day
209 W. Eighteenth Ave. (EA), Room 170

Title

Latent Socio-Spatial Process Model for Social Networks

Speaker

Crystal Linkletter, Brown University

Abstract

With concerns of bioterrorism, the advent of new epidemics that spread with person-to-person contact, such as SARS, and the rapid growth of online social networking websites, there is currently great interest in building statistical models that emulate social networks. Stochastic network models can provide insight into social interactions and increase understanding of dynamic processes that evolve through society. A major challenge in developing any stochastic social network model is the fact that social connections tend to exhibit unique inherent dependencies. For example, they tend to show a lot of clustering and transitive behavior, heuristically described as “a friend of a friend is a friend.” It might be reasonable to expect that covariate similarities, or “closeness” in social space, should somehow be related to the probability of connection for some social network data. The relationship between covariates and relations is likely to be complex, however, and may in fact be different in different regions of the covariate space. Here, we present a new socio-spatial process model that smoothes the relationship between covariates and connections in a sample network using relatively few parameters, so the probabilities of connection for a population can be inferred and likely social network structures generated. Having a predictive social network model is an important step toward the exploration of disease transmission models that depend on an underlying social network.